Response of membrane potential and intracellular pH to hypercapnia in neurons and astrocytes from rat retrotrapezoid nucleus.
نویسندگان
چکیده
We compared the response to hypercapnia (10%) in neurons and astrocytes among a distinct area of the retrotrapezoid nucleus (RTN), the mediocaudal RTN (mcRTN), and more intermediate and rostral RTN areas (irRTN) in medullary brain slices from neonatal rats. Hypercapnic acidosis (HA) caused pH(o) to decline from 7.45 to 7.15 and a maintained intracellular acidification of 0.15 +/- 0.02 pH unit in 90% of neurons from both areas (n = 16). HA excited 44% of mcRTN (7/16) and 38% of irRTN neurons (6/16), increasing firing rate by 167 +/- 75% (chemosensitivity index, CI, 256 +/- 72%) and 310 +/- 93% (CI 292 +/- 50%), respectively. These responses did not vary throughout neonatal development. We compared the responses of mcRTN neurons to HA (decreased pH(i) and pH(o)) and isohydric hypercapnia (IH; decreased pH(i) with constant pH(o)). Neurons excited by HA (firing rate increased 156 +/- 46%; n = 5) were similarly excited by IH (firing rate increased 167 +/- 38%; n = 5). In astrocytes from both RTN areas, HA caused a maintained intracellular acidification of 0.17 +/- 0.02 pH unit (n = 6) and a depolarization of 5 +/- 1 mV (n = 12). In summary, many neurons (42%) from the RTN are highly responsive (CI 248%) to HA; this may reflect both synaptically driven and intrinsic mechanisms of CO(2) sensitivity. Changes of pH(i) are more significant than changes of pH(o) in chemosensory signaling in RTN neurons. Finally, the lack of pH(i) regulation in response to HA suggests that astrocytes do not enhance extracellular acidification during hypercapnia in the RTN.
منابع مشابه
American Journal of Physiology Regulatory Integrative and Comparative THE RESPONSE OF MEMBRANE POTENTIAL (Vm) AND INTRACELLULAR pH (pHi) TO HYPERCAPNIA IN NEURONS AND ASTROCYTES FROM RAT RETROTRAPEZOID NUCLEUS (RTN)
We compared the response to hypercapnia (10%) in both neurons and astrocytes between a distinct area of the retrotrapezoid nucleus (RTN), the medio-caudal RTN (mcRTN) and more intermediate and rostral RTN areas (irRTN) in medullary brain slices from neonatal rats. Exposure to hypercapnic acidosis (HA) caused pHo to decline from 7.45 to 7.15 and caused a maintained, intracellular acidification o...
متن کاملHIGHLIGHTED TOPIC Central CO2 Chemoreception in Cardiorespiratory Control Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control
Erlichman JS, Leiter JC. Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control. J Appl Physiol 108: 1803–1811, 2010. First published January 28, 2010; doi:10.1152/japplphysiol.01321.2009.—We discuss the influence of astrocytes on respiratory function, particularly central CO2 chemosensitivity. Fluorocitrate (FC) poisons astrocytes, and s...
متن کاملGlia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control.
We discuss the influence of astrocytes on respiratory function, particularly central CO2 chemosensitivity. Fluorocitrate (FC) poisons astrocytes, and studies in intact animals using FC provide strong evidence that disrupting astrocytic function can influence CO2 chemosensitivity and ventilation. Gap junctions interconnect astrocytes and contribute to K+ homeostasis in the extracellular fluid (E...
متن کاملDevelopmental changes in intracellular pH regulation in medullary neurons of the rat.
We examined intracellular pH (pH(i)) regulation in the retrotrapezoid nucleus (RTN), a CO(2)-sensitive site, and the hypoglossal nucleus, a nonchemosensitive site, during development (postnatal days 2-18) in rats. Respiratory acidosis [10% CO(2), extracellular pH (pH(o)) 7.18] caused acidification without pH(i) recovery in the RTN at all ages. In the hypoglossal nucleus, pH(i) recovered in youn...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 289 3 شماره
صفحات -
تاریخ انتشار 2005